

High-order CFD and Multiscale Modelling for Aerospace and Nanotechnology Applications

Dimitris Drikakis

Fluid Mechanics and Computational Science Centre Institute of Aerospace Sciences Cranfield University, UK

Acknowledgements (PhDs and RAs): A. Antoniadis, M. Frank, M. Kio, I. Kokkinakis, Z. Rana, P. Tsoutsanis

Applied Modeling & Simulation Seminar Series NASA Ames Research Center, August 28, 2014

Cranfield

Motivation

- Advances in computational methods have increasingly enabled the simulation of complex flows, heat transfer, acoustics, and fluid-structure interaction phenomena.
- Advances in high performance computing (HPC) have allowed more complex simulations to be performed at shorter turn-around times.
- However, the design and condition monitoring of advanced aerospace systems increasingly require more detailed and accurate understanding of complex phenomena and conditions at all scales.
- □ Reducing the uncertainty in engineering simulations by increasing the accuracy, while making computations more efficient still remains a scientific challenge

Diverse applications

Subsonic and transonic

High-speed

Inertial Confinement Fusion

Unstructured grids

- □ Consist of different types of element shapes to improve efficiency in representing complicated geometries accurately by using the minimum number of cells
- □ Prismatic and Hexahedral elements ideal for being used in the boundary layer region

Figure 3.1: Convex polyhedrons

Spatial discretisation

- □ High-order of accuracy obtained by performing an interpolation (reconstruction) using the cell averages of the neighbourhood of considered cell
- Legendre type of polynomials employed for this purpose

log(error)

Error vs cost for high and low-order methods

Low Mach Corrections

Example: Compressible Turbulent mixing,

Richtmyer-Meshkov instability

5th-order method

5th-order + low Mach corrections

Effects on turbulence spectrum

5th-order method

5th-order + low Mach corrections

Rationale for different Turbulence Simulation Approaches

Energy cascade - Reynolds-Averaged Navier-Stokes (RANS)

Cranfield

Energy cascade in Large Eddy Simulation

Classical and Implicit LES

Implicit & Classical Large Eddy Simulation (LES) and Detached Eddy Simulation (DES)

- ☐ Large Eddy Simulation
 - Implicit LES
 - Classical LES
- ☐ Detached Eddy Simulation

Cranfield

Computational Models – CFD Code *Azure*

- Compressible Euler equations
- Incompressible and Compressible Navier-Stokes equations
- Reynolds Averaged Navier-Stokes equations
- ☐ Implicit Large Eddy Simulation
- Detached Eddy Simulation
- Non-hydrostatic Euler compressible equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla (\rho \mathbf{u} \otimes \mathbf{u}) = -\nabla p + \mathbf{divT}$$

$$\frac{\partial \rho e}{\partial t} + \nabla (\rho \mathbf{u} e) = -p \nabla \mathbf{u} + \nabla \cdot q$$

CFD Code Azure

- □ Several Riemann solvers (HLLC, Characteristics-based, Rusanov, Roe)
- □ Explicit Runge-Kutta time stepping schemes from 1st to 4th order of accuracy for unsteady flow problems
- □ Implicit time stepping LU-SGS based on 1st-order approximate Jacobians used with local-time stepping for convergence acceleration to steady state solutions
- □ RANS with Spalart-Allmaras, K-ω (SST) turbulence models
- □ **Detached Eddy Simulation (DES)** or **hybrid RANS/LES** with Spalart-Allmaras and K-ω turbulence Models
- □ Implicit Large Eddy Simulation (ILES)
- □ RANS transport variables can be discretised in the same manner as the mean flow equations

Near wall turbulence

Accuracy vs computational cost

Separated flows – Swept wings

$Re=2x10^5, M=0.03$

Instantaneous streamlines, vorticity and pressure

Clearance of the vortex core

ILES vs hybrid RANS/LES

90% half-span, 50% local chord

Subsonic Flows MDA 30P-30N

Transonic DLR F6 aircraft Azure CFD code

Azure-MUSCL3 Azure-WENO3

Section 5 y/b=0.411

Convergence achieved in less than 17 hours for a WENO 3rd-order scheme, on one node of 16 CPUs, 5M grid points

DLR F11 aircraft - Azure CFD code

Pressure coefficient – comparison of methods

Full aircraft DLR-F11 high-lift configurations with MUSCL 2nd, 3rd and WENO 3rd order schemes

Shock wave/boundary layer interaction

- Qualitative results showing the computed density for the WENO 3rd order scheme illustrating the shock structure compared with the shadowgraph from the experiment.
- Comparison of gradient reconstruction Green Gauss (GG) and least-square (LSQ) with the experimental data

(a) Experimental shadowgraph

Sonic Transverse Jet in a Supersonic Cross-flow (JISC)

JISC was studied experimentally to understand the effects of the injection of a sonic circular jet on a supersonic cross-flow transversely.

(b) 3D flow features; Q criterion Iso-Surfaces

JISC

Results – Mach 1.6 JISC Experiment:

- Flow animations:
- (a) Density Gradient,

(b) Passive Scalar

JISC

Results – Mach 1.6 JISC Experiment:

Streamwise Velocity Profile Comparison at mid-plane (z=0)

Turbulent Kinetic Energy Profile Comparison at mid-plane (z=0)

HyShot-II

HyShot-II Scramjet:

- Successful test flight 30th
 July 2002
- Achieved Supersonic
 Combustion (SC) at Mach 7.6
 at altitude of between 35 km
 and 23 km.
- Fuel Gaseous Hydrogen
- Highly parabolic trajectory (near Vertical decent) to obtain correlations over a range of ambient pressures.

HyShot-II

Results – Analysis of the HyShot-II Scramjet:

- Pressure measurements the primary means for obtaining the correlation
- Combustion and non-combustion investigations on the geometry are carried out at DLR, Germany using HEG and CFD.

HyShot-II

Launcher Aerodynamics

- Ariane nozzles experience high side loadings due to vortex shedding
- Can cause serious control issues and
- Limit the development of combustion chambers as longer nozzles cannot be employed

UAV flying formation

From Macro to Nano Scale

- Several new applications and design concepts require understanding of fluid/material phenomena and interactions at micro and nano scale.
- This motivates the design of multiscale methods
- Multi-scale modelling and simulations can also be used in support of the development of simpler engineering models.

Example of coupling flow, near-wall molecular transport, and solid material

Molecular and Multi-Scale methods

Molecular Dynamics

Effective for studying confined fluids

- Investigate interface effects from first principles
- Level of detail beyond experimental possibilities

Challenges

- Difficult to accurately model complex physical systems
- Complications in extracting macroscopic properties from phase space trajectories
- Computational expense

Hybrid solution interface

Continuum perspective

Molecular perspective

Cranfield

Point-wise coupling

- Continuum covers the entire domain
- MD solver is used as a local refinement to replace analytical or empirical models
- Two types of relations:

Constitutive relations:

- Compute equations of state, e.g.,p=p(r,c,T)
- Compute transport coefficients, e.g., viscosity, diffusion coefficient, heat conductivity

Boundary conditions:

- Tangentrial stress $t_t = t_t(r, \mathbf{c}, T, u)$,
- Heat flux, $q=q(r, \mathbf{c}, T, u)$
- slip velocity, $v_s = v_s(r, \mathbf{c}, T, u)$,

Modelling surface effects

DNA transport in micro-fluidics

Thermal Management

Important problem in avionics

- Heat fluxes of the order of 10³ W/cm²
- Failures during flight
- Limiting factor for additional functionality

Cause

 Low thermal conductivity conventional materials

Power & Thermal Requirements

 Liquid cooling has reached its limits

Nanofluids

- ☐ Suspensions of solid particles with nanometer size diameters in a fluid
- □ Nanofluids have enhanced thermal properties
- □ Physical explanation and theoretical models are a topic of debate

Nanofluid

Water-Copper nanofluid, confined in graphene walls

 Thermal conductivity was calculated for various wall separation distances for different volume fractions.

Nanofluid

Thermal conductivity

- Increases with increasing volume fraction
- All curves have similar shape
- As the wall separation distance decreases, the thermal conductivity for all particle loadings experiences a jump

Nanofluid

Particle affects structure of liquid atoms

- Graphene is hydrophobic
- Addition of particle attracts the density layers at the solid/liquid interface
- The smaller the channel is the more effect the particle has to the solidliquid interface
- In turn the thermal conductivity is affected

34Å Channel width

94Å Channel width

Ballistic heat transfer

Concluding remarks

- High-order CFD has significant potential for addressing design challenges
- MD and multi-scale modelling can provide new insights into small scale phenomena that can enable the development of new technologies.
- ☐ Hybrid molecular-continuum methods for solids and fluids are capable of resolving physics on micro/nano scale
- □ Research into the development of more accurate and efficient methods as well as software redesign need to go hand-in-hand with the High Performance Computing advancements